

Sustainable management of contaminated sites

Presentation 3.1 Phase 3 - Remediation Assessment

> Boudewijn Fokke December 2019

Content

- Introduction
- Remediation Assessment objectives
- Remediation Assessment tasks
- Remediation design steps
- Selection process
- Preliminary Design
- Implement project risk management
- Implement stakeholder involvement
- Remediation Assessment reporting
- Remediation Assessment Process

The site components of contaminated site

Stock of hazardous waste

Buried or pit hazardous waste

Bunker or building with hazardous

Contaminated soil & groundwater

Why focus on hazardous waste/source removal?

Risk increasing

Remediation Assessment objectives

Select feasible remediation techniques

Sketch remedial options

Select preferred remedial option using <u>Multi-Criteria Decision Analysis (MCDA)</u>

Preliminary design preferred remedial options

Implement proper project risk management

Involve stakeholders

Summarize results in correct format

PCB

Remediation Assessment tasks

- Select risk reduction techniques for each site component
- Conceptual design at least three different site remediation options
 - ✓ One maximum risk reduction highest cost
 - \checkmark One minimum risk reduction lowest costs
 - ✓ At least one Intermediate
- Select best option with a Multi Criteria Decision Analyses
 - \checkmark The most risk reduction
 - \checkmark With the best environmental merits
 - \checkmark Not entailing excessive cost
- Preliminary design best option
- Estimate cost best option

PCB

Selection remediation techniques

Hazardous waste

Repackaging and removing hazardous substances from contaminated site

Contaminated building

Decontaminating/demolition buildings and infrastructures

Buried hazardous waste

• Removing buried hazardous waste

Soil and groundwater

- Remediating soil
 - ✓ Excavation and removal
 - ✓ Excavation and on-site treatment
 - ✓ In-situ remediation
- Remediating groundwater
 - ✓ Pump and treat
 - ✓ In-situ remediation

PCB

Remediation design steps

Phase 3

Selection remediation techniques for each site component

<u>Conceptual design remedial options</u> describing feasible remediation measures for all site components

Selection of the best remedial option based on risk reduction, environmental merits and cost

Preliminary design of the best remedial option

Phase 4

Detailed design of the best remedial option

Hazardous waste Risk reduction / remediation techniques

Destruction

- Removal
- Repackaging
- Transport
- Interim storage
- Transport
- Destruction

Containment

- Removal
- Repackaging
- Transport
- Final storage
 - ✓ Bunker
 - ✓ Sarcophagi
 - ✓ Storage
 - ✓ Controlled hazardous landfilling

PCB

Hazardous waste Treatment or landfill

1. Treatment is compulsory when

- ✓ Reusable product
- Technically feasible
- ✓ Cost efficient
- 2. Based on
 - ✓ Reuse standards
 - ✓ Validated treatment efficiencies
 - ✓ Measured degree of contamination
- 3. Landfilling of soil is taxed in EU

PCB

Excavation

- Excavated top cover
 - \checkmark If clean store for re-use
 - \checkmark If not clean remediate
- If necessary, lower the groundwater table by drainage
- Excavate buried hazardous waste
- Pre-treat and/or repack buried hazardous waste
- Excavate contaminated pit bottom and wall
- If visibly contaminated with hazardous waste treat as hazardous waste
- Sample the bottom and the sites when all waste and visibly contaminated soil is removed
- If clean backfill excavation with clean soil
- If soil contaminated remediate

Pit Remediation techniques

Obtaining clean back fill material

PCB

PLATFORM

unita

Contaminated soil & groundwater Remediate in-situ or ex-situ

To consider

- 1. Cost
 - Actual costs of installation and running
 - Time and ability (project development)
- 2. Technical / Environmental factors
 - Biodegradability of contaminants
 - Depth / spreading / position of the plume
 - Combination of in/ex-situ technologies
 - In or excluding groundwater remediation

3. Results

- Project risks
- Uncertainties
- Residual contamination
- Needed monitoring and aftercare

PCB

Contaminated soil & groundwater Remediate in-situ or ex-situ

• Immobilization: preferably coarse textured-sandy soils

OPERATIONAL IN-SITU TECHNOLOGIES

PHYSICAL

BIOLOGICAL

CHEMICAL

- Preferably coarse textured-sandy soils
- Biological: only degradable organic components
- Physical and chemical: difficult to control
- In-situ immobilization

Preliminary Design Selected Remedial Option

- Carry out additional technical survey
- Update CSM
- Preliminary technical design
- Write supervision plan
- Write Health And Safety Plan (HASP)
- Estimate the cost

Preliminary Design Health & Safety measures

- Personal protective equipment (PPE)
- Start work analysis
- Toolbox meetings

PCB

Preliminary Design Health & Safety site zoning

- Contaminated zone
- Decontamination zone
- Clean zone

PCB

Implement Project risk management

Risk is an event that, if triggered, causes problems

- The origin of a risks can be
 - 1. Technical
 - 2. Organizational
 - 3. Legal
 - 4. Environmental
 - 5. Financial
 - 6. Social
 - 7. Political

PCB

Implement Stakeholder involvement

- Making sure that all stakeholders are informed before a remediation project starts
- Proper stakeholder involvement avoids health risks, accidents and protests
- Good stakeholder involvement planning
 - ✓ Provides overview of activities needed for each stakeholder group
 - ✓ Creates involvement
 - ✓ Creates common project ownership
 - ✓ Provides opportunity to share inspiration

Remediation Assessment Reporting

PCB PLATFORM Unital

- General information
- CSM Site Assessment results (Phase 2)
- Remediation Assessment
 - ✓ Conceptual design of at least three remedial options
 - $\checkmark\,$ Selection of the remedial option
 - $\checkmark\,$ Points of concern: uncertainties and how to reduce them
- Remediation Plan
 - $\checkmark\,$ Technical measures selected option / Preliminary design
 - ✓ Planning selected option
 - ✓ Estimated costs selected option
- Appendices

Remediation Assessment The Process

Contact

Questions?

Boudewijn Fokke

+31 65 18 37 08 9 / +31 57 06 99 56 7

Boudewijn.fokke@tauw.com

