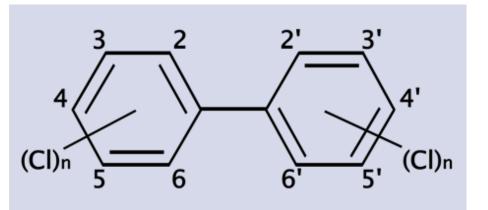


Sustainable management of contaminated sites

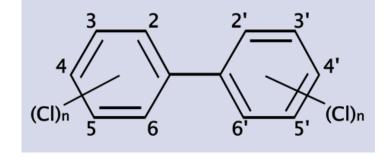

Presentation 2.1 Phase 2 – PCB Contaminant behavior

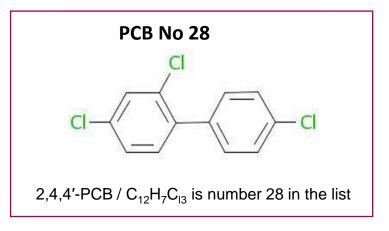
Charles Pijls Summarized & presented by Boudewijn Fokke October 2021

Contents

- PCB chemical and physical properties
- Contaminant behavior in soil and groundwater
- Examples CSM
- Questions ?

Dutch PCB reference framework for soil


- Limit value PCB total = 0.02 mg/kg dw or ppm
- Remediation value PCB total = 1 mg/kg dw or ppm
- PCB total are PCB 28, 52, 101, 118, 138, 153 and 180


PCB chemical and physical properties

PCB - Polychlorinated biphenyl - C₁₂H_{10-x}Cl_x

- Man-made organic chemicals
- Classified as a POP (Persistent Organic Pollutant)
- Annex 1 of the Stockholm Convention,
- By 2025 elimination of the use in equipment
- 209 PCB congeners with similar organic structure but varying number of chlorine
- The positions of chlorine atoms on the benzene rings are indicated by numbers assigned to the carbon atoms
- PCB total are PCB 28, 52, 101, 118, 138, 153 and 180

PCB

PCB chemical and physical properties

Properties

- High heat stability
- Hardly inflammable (complete combustion only at > 1000 °C)
- Relatively good acid, alkali and chemical resistance
- Stable against oxidation and hydrolyze

- Only poorly soluble in water (polar fluid)
- Soluble in organic fluids / fat / oil (a polar fluid)
- Good heat conductivity
- Low vapor pressure
- Very small electrical conductivity (good insulator)

PCB applications

PCB in closed applications

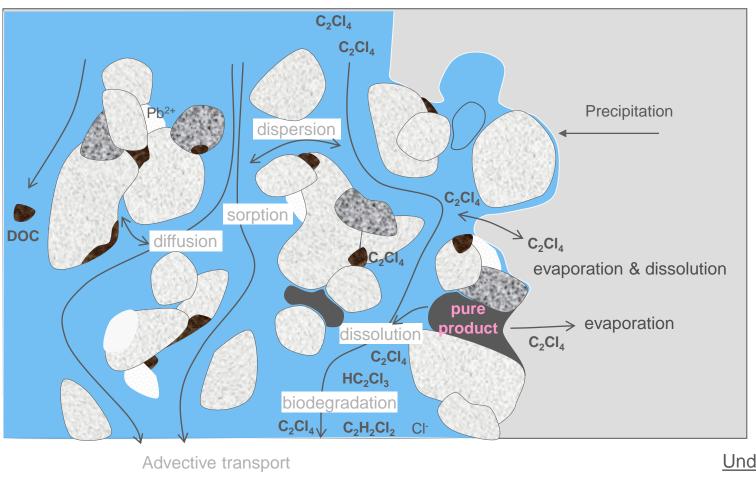
- Insulation and/or cooling fluid in transformers
- Dielectric fluid in capacitors
- Hydraulic fluid in lifting equipment, trucks and high-pressure pumps (mining industry especially)

PCB in partially open applications

- Heat transfer fluids
- Hydraulic fluid
- Vacuum Pumps
- Switches
- Voltage Regulators
- Liquid Files Electrical Cables
- Liquid Files Circuit Breakers

PCB applications

PCB Application in Open Systems


- Building materials
 - ✓ Sealants
 - ✓ Oil-based paint
 - ✓ Plaster
 - ✓ Ceiling components

✓ Etc.

- Lubricating fluid in oils and grease
- Water-repellent impregnating agent
- Fire retardant for wood, paper, fabric and leather
- Laminating agent in paper production
- Additive in glues, sealants and corrosion protection coatings
- Carrier for insecticides
- Polymerisation catalyst support for petrochemicals
- Cable coatings/casings

Contaminant behavior in soil and groundwater Distribution in soil compartments

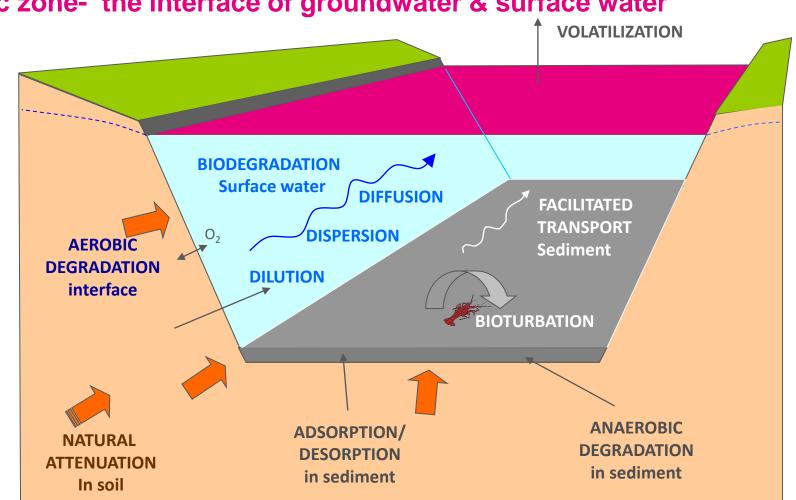
Physical process

PCB

PLATFORM

- Sorption
- Dispersion
- Diffusion
- Evaporation
- Precipitation

Chemical process


- Dissolution
- Complexation

Biological process

Biodegradation

Underlined processes are most relevant for PCB

Contaminant behavior in soil and groundwater Processes in te hyporheic zone

Hyporheic zone- the interface of groundwater & surface water

PCB

Contaminant behavior in soil and groundwater Important contaminant properties

- Melting point
- Density
- Solubility
- Viscosity
- Residual saturation
- Biodegradability

PCB

Contaminant behavior in soil and groundwater Migration

- Migration of solids
 - By wind erosion
 - By run-off
 - Dissolution
 - Degradation (bio/photo-chemical)
- Migration of liquids
 - Infiltration in soil
 - Dissolution
 - Volatilization
 - Degradation (bio/photo-chemical)
- Attention
 - Cosolvents (PCB in oil)
 - Facilitated transport (e.g. dioxins and organic matter)

PCB

Contaminant behavior in soil and groundwater Density

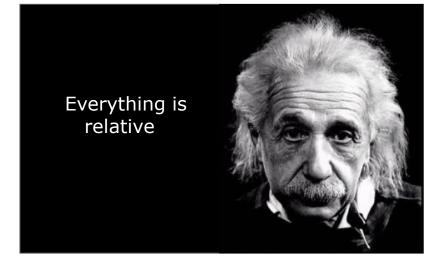
Density with respect to water

- Density < 1 kg/dm³
 - ✓ Light Non-Aqueous Phase Liquids or LNAPL
 - ✓ Petroleum- en aromatic hydrocarbons
 - ✓ Free phase in monitoring wells
- Density > 1 kg/dm³
 - ✓ Dense Non-Aqueous Phase Liquids or **DNAPL**
 - ✓ (Volatile) chlorinated solvents (e.g. Tri, Per, Tetra)
 - ✓ DNAPL in monitoring wells
 - ✓ Salt solutions
- Density > 5 kg/dm³
 - ✓ Heavy metals

POLUTANTY – DNAPL, LNAPL

PCB

PLATFORM


<image><image>

PCB1 density varies from 1.182 to 1.566 kg/dm³

Contaminant behavior in soil and groundwater Solubility

- Solubility is a relative concept
- High water solubility
 - ✓ Salts
 - ✓ Aromatic and chlorinated solvents
- Low water solubility
 - ✓ Poly-Aromatic Hydrocarbons
 - ✓ Petroleum Hydrocarbons
 - ✓ Metals
 - ✓ PCB (but good soluble in fats, oils and organic solvents)

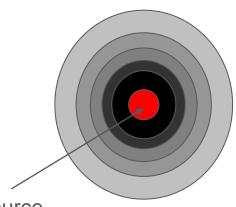
PCB

PLATFORM

PCB is low water soluble: 0.0027-0.42 ng/L


Contaminant behavior in soil and groundwater Diffusion

Diffusion:


Contaminant transport resulting from concentration gradients

Not Diffusion resistant tank

Diffusion resistant piping

PCB

PLATFORM

Source

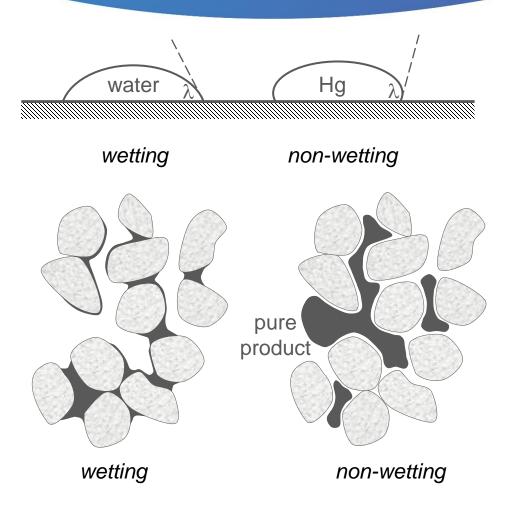
Migration in time

Contaminant behavior in soil and groundwater Viscosity

- Viscosity Milli Pascal seconds (mPa-s) of
 - ✓ Trichloroethene 0.55
 - ✓ Gasoline 0.7
 - ✓ Water 20 °C 1
 - ✓ Mercury 1.5
 - ✓ Diesel 4
 - ✓ Asphalt
 10⁵
 - ✓ Glass 10¹⁸

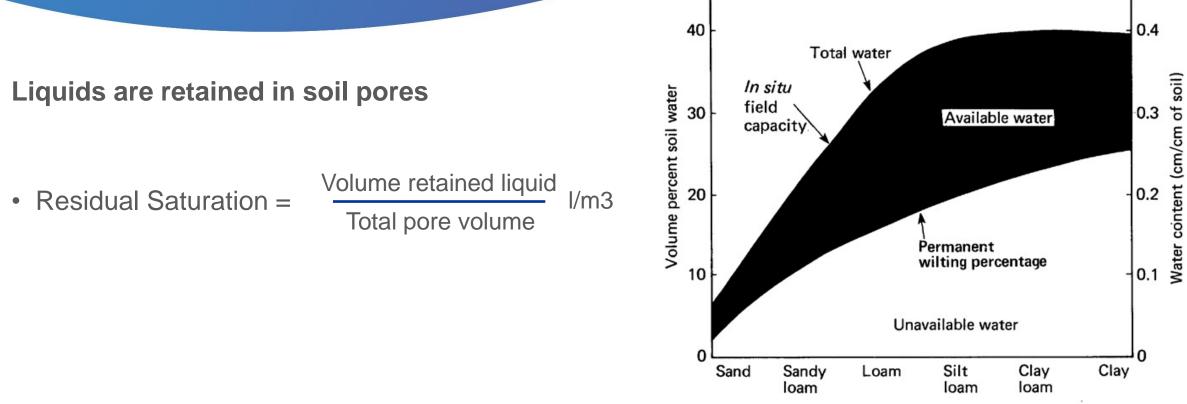
Viscosity PCB ranges from oil to a thin, light-colored liquids to yellow or black waxy solids The more chlorine atoms in the molecules, the more viscous

the PCB is



Increasing viscosity

Contaminant behavior in soil and groundwater Surface Tension and Residual Saturations



PCB

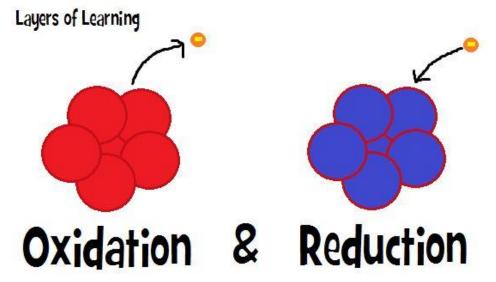
Contaminant behavior in soil and groundwater Residual Saturation

- Soil with high permeability: Residual Saturation = 3 5 I/m³
- Soil with low permeability: Residual Saturation = 20 40 l/m³

PCB

Contaminant behavior in soil and groundwater Biodegradation

- Bacteria benefit from biochemical reactions (transfer of electrons)
- Essentials:
 - ✓Bacteria
 - ✓ Reducer is an electron-donor, substrate
 - ✓ Oxidizer is an electron-acceptor


PCB

Contaminant behavior in soil and groundwater Biodegradation

- Oxidative degradation
 - ✓ Contaminant is <u>electron donor</u>
 - ✓ Oxygen is <u>electron acceptor</u>

- Reductive Degradation
 - ✓ (Natural) organic matter is *electron donor*
 - ✓ Contaminant is *electron acceptor*

PCB

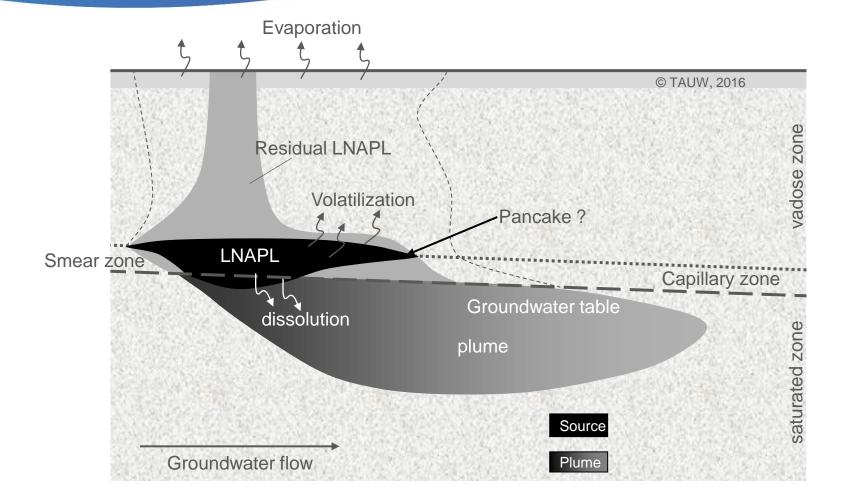
Contaminant behavior in soil and groundwater Biodegradation

- Practically all organic matter can be biodegraded
- How can we accelerate biodegradation processes

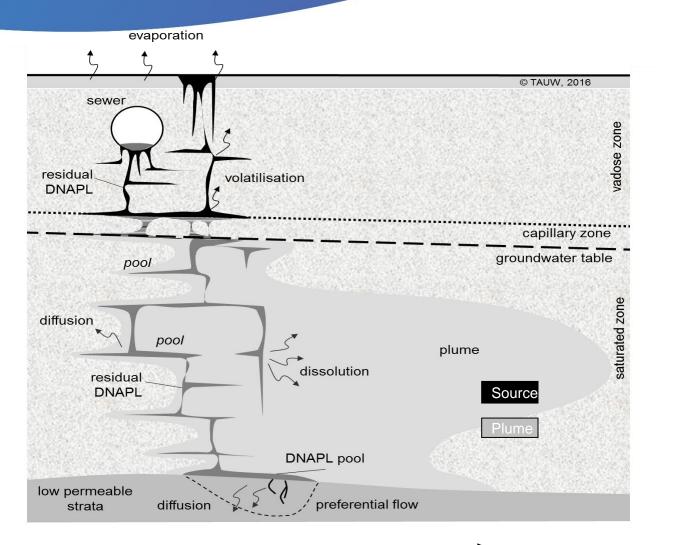
 \checkmark Balancing electron donor and acceptor

- ✓ Increase temperature
- ✓ Addition of nutrients (N and P)
- ✓ Addition of bacteria (bio-augmentation)

✓ Keep moist



PCB


Petroleum hydrocarbons Conceptual model of migration

Volatile chlorinated solvents Conceptual model of Migration



groundwater flow

Questions?

Contact

Thank you for your attention

• Boudewijn Fokke

- +31 65 18 37 08 9 / +31 57 06 99 56 7
- Boudewijn.fokke@tauw.com

